Offline Reinforcement Learning with Reverse Model-based Imagination

Guangxiang Zhu² Siyuan Li¹ **Chongjie Zhang¹** Jianhao Wang^{*1} Wenzhe Li^{*1} Haozhe Jiang¹ ²Baidu Inc. ¹IIIS, Tsinghua University

Motivation

Distributional shift is one of the main challenges in offline RL. To address this problem, recent offline RL methods attempt to introduce **conservatism bias**.

Examples:

Model-free methods: BCQ, BEAR, BRAC, CQL, ...

- Encode the bias into policy or value functions by using conservative regularizations or specially designed network structures.
- Constrained policy search can limit the generalization beyond the offline dataset.

BCQ's execution path

Dataset trajectory

Model-based methods: MOPO, MOReL, Repb-SDE, ...

- First learn a forward dynamics model from the offline dataset with conservatism quantifications, and then generate imaginary trajectories on high confidence regions to extend the offline dataset.
- Conservatism quantifications often suffer from overgeneralization and mislead forward model-based imaginations to undesired areas.

MOPO's model-uncertainty

MOPO's imagination

MOPO's execution path

How to enable conservative generalization?

Reverse Offline Model-based Imagination

- The optimal policy requires a composition of multiple trajectories in the offline dataset.
- Forward imaginations potentially discover a better policy outside the offline dataset, but may also lead to undesirable regions consisting of fake high-value states due to overgeneralization errors.
- Reverse imaginations generate possible traces leading to target goal states (of) inside the offline dataset, which provides a conservative way of augmenting the offline dataset. **Reverse model:**

$p(s, r|s', a) = p(s|s', a)p(r|s', a, s) = T_r(s|s', a)p(r|s, a)$ $\mathcal{L}_M(\phi) = \mathop{\mathbb{E}}_{(s,a,r,s')\sim\mathcal{D}_{\text{env}}} \left[-\log \widehat{p}_{\phi}(s,r|s',a) \right]$

Reverse policy:

- Generative models: conditional VAE.
- Uniform policy.

Combination with model-free algorithms:

- ROMI provides informed data augmentation to extend the offline dataset.
- Since the reverse rollout policy is agnostic to policy learning, ROMI can be combined with any model-free offline RL algorithm

Experiments

Table 1: Performance of ROMI and best performance of prior methods on the maze and antmaze domains, on the normalized return metric proposed by D4RL benchmark [18]. Scores roughly range from 0 to 100, where 0 corresponds to a random policy performance and 100 corresponds to an expert policy performance. med is short for medium. MB BC ROMI-BCQ MF Environment

Table 2: Performance of ROMI and best performance of prior methods on Gym-MuJoCo tasks.								
Environment	BC	ROMI-CQL	MF	MB				
random-walker2d random-hopper random-halfcheetah	0.0 0.9 -0.1	$\begin{array}{rrrr} 7.5 \ \pm \ 20.0 \\ \textbf{30.2} \ \pm \ 4.4 \\ 24.5 \ \pm \ 0.7 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.0^{COMBO} 31.7 ± 0.1 ^{Repb-SDE} 38.8 ^{COMBO}				
medium-walker2d medium-hopper medium-halfcheetah	41.7 40.0 39.2	$\begin{array}{r} \textbf{84.3} \ \pm \ 1.1 \\ 72.3 \ \pm \ 17.5 \\ 49.1 \ \pm \ 0.8 \end{array}$	$\begin{array}{r} \textbf{83.8} \pm 0.2^{\text{CQL}} \\ 66.6 \pm 4.1^{\text{CQL}} \\ 49.0 \pm 0.4^{\text{CQL}} \end{array}$	$85.3 \pm 2.2^{\text{Repb-SDE}}$ 95.4 MOReL 69.5 $\pm 0.0^{\text{MOPO}}$				
medium-replay-walker2d medium-replay-hopper medium-replay-halfcheetah	2.2 8.1 25.6	$\begin{array}{r} \textbf{109.7} \ \pm \ 9.8 \\ \textbf{98.1} \ \pm \ 2.6 \\ \textbf{47.0} \ \pm \ 0.7 \end{array}$	$ \begin{vmatrix} 88.4 \pm 1.1^{CQL} \\ \textbf{97.0} \pm 0.8^{CQL} \\ 46.4 \pm 0.3^{CQL} \end{vmatrix} $	$\begin{array}{r} 83.8 \ \pm \ 7.6^{ \text{Repb-SDE}} \\ 93.6^{ \text{MOReL}} \\ \textbf{68.2} \ \pm \ 3.2^{ \text{MOPO}} \end{array}$				
medium-expert-walker2d medium-expert-hopper medium-expert-halfcheetah	73.4 36.0 39.7	$\begin{array}{r} \textbf{109.7} \ \pm \ 5.3 \\ \textbf{111.4} \ \pm \ 5.6 \\ \textbf{86.8} \ \pm \ \textbf{19.7} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} \textbf{111.2} \ \pm \ 0.2^{\text{ Repb-SDE}} \\ \textbf{111.1}^{\text{COMBO}} \\ \textbf{95.6}^{\text{MOReL}} \end{array}$				

Reverse Imagination VS Forward Imagination

Table 3: Ablation study about ROMI with model-based imagination. Delta equals the improvement of ROMI-BCQ over BCQ on the normalized return metric.

Dataset type	Environment	ROMI-BCQ (ours)	FOMI-BCQ	BCQ (base)	Delta
sparse	maze2d-umaze	139.5 ± 3.6	8.1 ± 15.5	41.1 ± 7.6	98.4
sparse	maze2d-medium	82.4 ± 15.2	93.6 ± 41.3	9.7 ± 14.2	72.7
sparse	maze2d-large	83.1 ± 22.1	-2.5 ± 0.0	38.3 ± 10.4	44.8
dense	maze2d-umaze	98.3 ± 2.5	30.7 ± 0.9	37.0 ± 5.3	61.3
dense	maze2d-medium	102.6 ± 32.4	64.7 ± 37.0	37.9 ± 4.5	64.7
dense	maze2d-large	124.0 ± 1.3	-0.7 ± 7.1	$79.8~\pm~12.2$	44.2
fixed	antmaze-umaze	68.7 ± 2.7	79.5 ± 2.5	75.3 ± 13.7	-6.6
play	antmaze-medium	35.3 ± 1.3	26.2 ± 5.5	0.0	35.3
play	antmaze-large	20.2 ± 14.8	12.0 ± 3.3	0.0	20.2
diverse	antmaze-umaze	61.2 ± 3.3	66.8 ± 3.5	49.3 ± 9.9	11.9
diverse	antmaze-medium	27.3 ± 3.9	12.3 ± 2.1	0.0	27.3
diverse	antmaze-large	41.2 ± 4.2	$17.8~\pm~2.1$	0.0	41.2

ROMI-BCQ's imagination

FOMI-BCQ's imagination

ROMI-BCQ's execution path

FOMI-BCQ's execution path

Conclusion

- We show that reverse imaginations could enable conservative generalization.
- ROMI provides a novel bidirectional learning paradigm for offline RL.
- We show that ROMI could achieve better or comparable performance to state-of-the-art baselines.

NeurIPS 2021 – December 2021, Online