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Background: Offline RL
 The success of modern machine learning
 Scalable data-driven learning methods

 Reinforcement learning
 Online learning paradigm
 Interaction is expensive & dangerous

 Can we develop data-driven offline RL?
 Healthcare, Robotics, Recommendation…
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Background: Offline RL

3[Kumar, Levine, NeurIPS 2020 Tutorial]
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Background: Offline RL
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Offline RL
• the policy 𝜋𝜋𝑘𝑘 is updated with a static 

dataset 𝒟𝒟, which is collected by 
unknown behavior policy 𝜋𝜋𝛽𝛽

• Interactions are not allowed

 𝒟𝒟 = 𝑠𝑠𝑖𝑖 , 𝑎𝑎𝑖𝑖 , 𝑠𝑠𝑖𝑖′, 𝑟𝑟𝑖𝑖
 𝑠𝑠 ∼ 𝑑𝑑𝜋𝜋𝛽𝛽 𝑠𝑠
 𝑎𝑎 ∼ 𝜋𝜋𝛽𝛽 𝑎𝑎 𝑠𝑠
 𝑠𝑠′~ 𝑝𝑝 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎
 𝑟𝑟 ← 𝑟𝑟(𝑠𝑠, 𝑎𝑎)
 Objective: 

max
𝜋𝜋

∑𝑡𝑡=0𝑇𝑇 𝐸𝐸𝑠𝑠𝑡𝑡∼𝑑𝑑𝜋𝜋 𝑠𝑠 ,𝑎𝑎𝑡𝑡∼𝜋𝜋(𝑎𝑎∣𝑠𝑠)[𝛾𝛾𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)]
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Offline RL: Challenges
 Distributional shift
 Learning with the dataset 𝒟𝒟 only guarantees accurate 

predictions on the data distribution
 Common idea: conservatism
 Model-free: stay inside the support of the dataset distribution
 BCQ, BEAR, BRAC, CQL, …
 Cons: overly conservative
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Dataset support BCQ behavior
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Offline RL: Conservatism
 Common idea: conservatism
 Model-free: stay inside the support of the dataset distribution
 Cons: overly conservative
 Model-based: generalize beyond the dataset
 MOPO, MOReL, Repb-SDE
 Cons: uncertainty quantification
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Offline RL: Conservatism
 Common idea: conservatism
 Model-based: generalize beyond the dataset
 Cons: uncertainty quantification
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MOPO imagination MOPO penalty MOPO behavior
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Reverse Offline Model-based Imagination
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ROMI: Components
 Reverse model

 Reverse policy
 Generative models: conditional VAE
 Uniform policy
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Experiments: D4RL
 D4RL benchmark
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Experiments: D4RL
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ROMI imagination

ROMI behavior
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Experiments: Ablation
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Reverse imaginations induce more conservative 
and effective behavior!
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hopper-random halfcheetah-medium walker2d-medium-replay maze2d-medium

maze2d-largeantmaze-umaze-diverse antmaze-medium-diverse antmaze-large-diverse
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Takeaway
 Reverse imaginations enable conservative generalization
 Bidirectional learning paradigm
 Forward dataset trajectory
 Reverse imaginary trajectory

 Better or comparable performance to state-of-the-art 
baselines

 More details
 Paper & poster!
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Thanks for your listening
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