Offline RL with Reverse Model-based Imagination

Presenter: Wenzhe Li

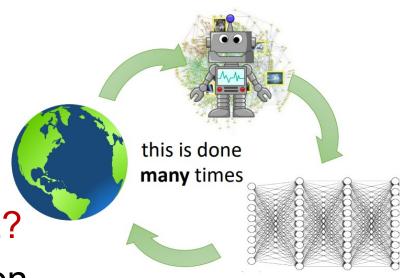
Joint work with: Jianhao Wang, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, Chongjie Zhang

NeurIPS 2021

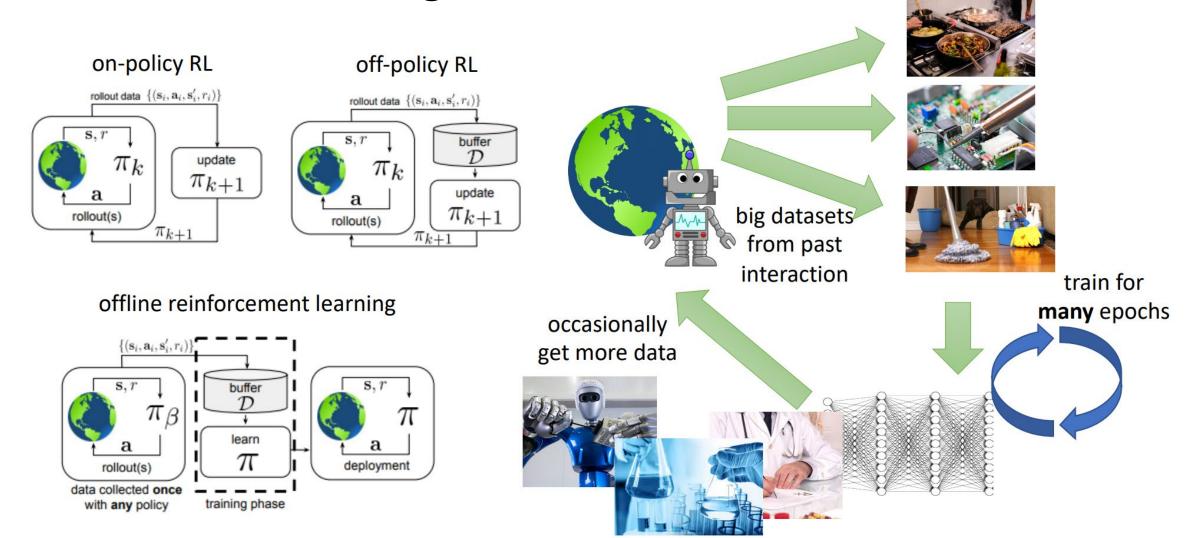
Background: Offline RL

- The success of modern machine learning
 - Scalable data-driven learning methods

- Reinforcement learning
 - Online learning paradigm
 - Interaction is expensive & dangerous
 - Can we develop data-driven offline RL?
 - Healthcare, Robotics, Recommendation...



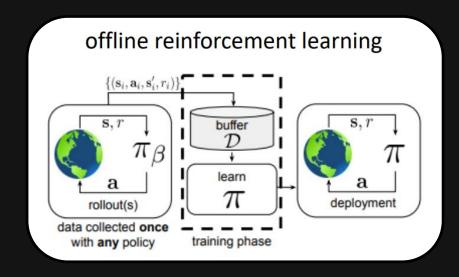
Background: Offline RL



Background: Offline RL

Offline RL

- the policy π_k is updated with a static dataset \mathcal{D} , which is collected by unknown behavior policy π_β
- Interactions are not allowed

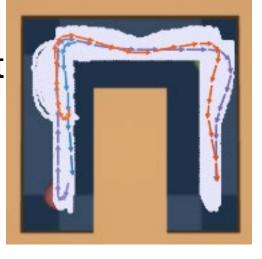


- $s \sim d^{\pi_{\beta}}(s)$
- $\blacksquare a \sim \pi_{\beta}(a \mid s)$
- $s' \sim p(s' \mid s, a)$
- $r \leftarrow r(s, a)$ nteraction
- Objective:

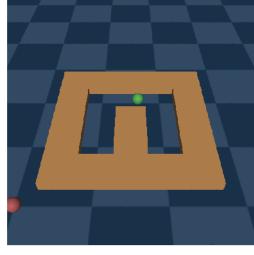
$$\max_{\pi} \sum_{t=0}^{T} E_{s_t \sim d^{\pi}(s), a_t \sim \pi(a|s)} [\gamma^t r(s_t, a_t)]$$

Offline RL: Challenges

- Distributional shift
 - Learning with the dataset D only guarantees accurate predictions on the data distribution
- Common idea: conservatism
 - Model-free: stay inside the support
 - BCQ, BEAR, BRAC, CQL, ...
 - Cons: overly conservative



Dataset support



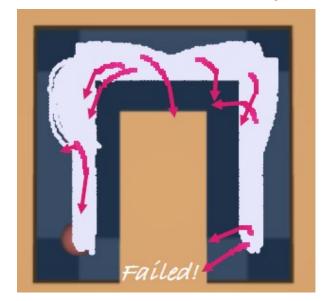
BCQ behavior

Offline RL: Conservatism

- Common idea: conservatism
 - Model-free: stay inside the support of the dataset distribution
 - Cons: overly conservative
 - Model-based: generalize beyond the dataset
 - MOPO, MOReL, Repb-SDE
 - Cons: uncertainty quantification

Offline RL: Conservatism

- Common idea: conservatism
 - Model-based: generalize beyond the dataset
 - Cons: uncertainty quantification

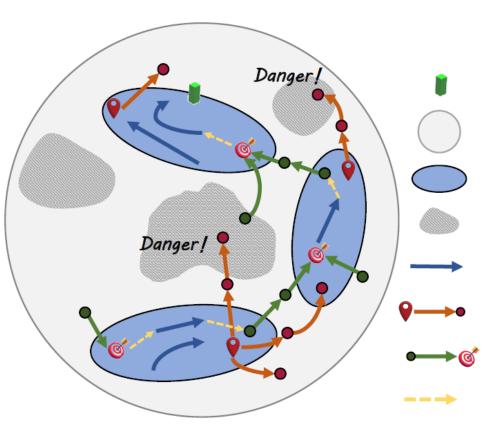


MOPO imagination

MOPO penalty

MOPO behavior

Reverse Offline Model-based Imagination



Algorithm 1 ROMI: Reverse Offline Model-based Imagination

- 1: **Require:** Offline dataset \mathcal{D}_{env} , rollout horizon h, the number of iterations C_{ϕ} , C_{θ} , T, learning rates α_{ϕ} , α_{θ} , model-free offline RL algorithm (i.e., BCQ or CQL)
- 2: Randomly initialize reverse model parameters ϕ
- 3: **for** $i = 0 \dots C_{\phi} 1$ **do**

ightharpoonup Learning a reverse dynamics model \widehat{p}_{ϕ}

- 4: Compute \mathcal{L}_M using the dataset \mathcal{D}_{env}
- 5: Update $\phi \leftarrow \phi \alpha_{\phi} \nabla_{\phi} \mathcal{L}_{M}$
- 6: Randomly initialize rollout policy parameters θ
- 7: **for** $i = 0 \dots C_{\theta} 1$ **do**

 \triangleright Learning a diverse rollout policy \widehat{G}_{θ}

- 8: Compute \mathcal{L}_p using the dataset \mathcal{D}_{env} 9: Update $\theta \leftarrow \theta - \alpha_{\theta} \nabla_{\theta} \mathcal{L}_p$
- 10: Initialize the replay buffer $\mathcal{D}_{model} \leftarrow \emptyset$
- 11: **for** $i = 0 \dots T 1$ **do**

- \triangleright Collecting the replay buffer \mathcal{D}_{model}
- 2: Sample target state s_{t+1} from the dataset \mathcal{D}_{env}
- 13: Generate reverse model rollout $\hat{\tau} = \{(s_{t-i}, a_{t-i}, r_{t-i}, s_{t+1-i})\}_{i=0}^{h-1}$ from s_{t+1} by drawing samples from the dynamics model \hat{p}_{ϕ} and rollout policy \hat{G}_{θ}
- 14: Add model rollouts to replay buffer, $\mathcal{D}_{\text{model}} \leftarrow \mathcal{D}_{\text{model}} \cup \{(s_{t-i}, a_{t-i}, r_{t-i}, s_{t+1-i})\}_{i=0}^{h-1}$
- 15: Compose the final dataset $\mathcal{D}_{total} \leftarrow \mathcal{D}_{env} \cup \mathcal{D}_{model}$
- 16: Combine model-free offline RL algorithms to derive the final policy π_{out} using the dataset \mathcal{D}_{total}
- 17: **Return:** π_{out}

ROMI: Components

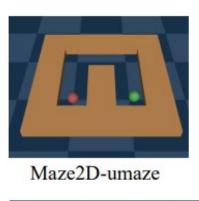
Reverse model

$$p(s, r|s', a) = p(s|s', a)p(r|s', a, s) = T_r(s|s', a)p(r|s, a)$$
$$\mathcal{L}_M(\phi) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{D}_{env}} [-\log \widehat{p}_{\phi}(s, r|s', a)]$$

- Reverse policy
 - Generative models: conditional VAE
 - Uniform policy

Experiments: D4RL

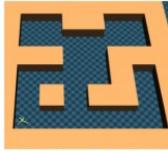
D4RL benchmark



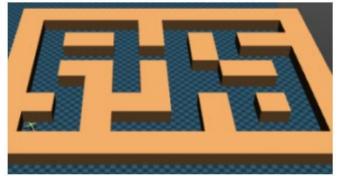
Maze2D-medium

Maze2D-large

AntMaze-umaze



AntMaze-medium

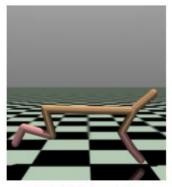


AntMaze-large



Walker2d

Hopper



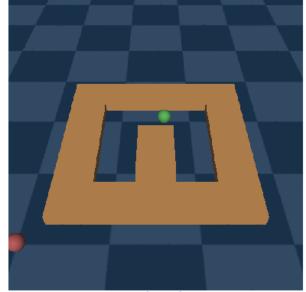
HalfCheetah

Experiments: D4RL

Table 1: Performance of ROMI and best performance of prior methods on the *maze* and *antmaze* domains, on the normalized return metric proposed by D4RL benchmark [18]. Scores roughly range from 0 to 100, where 0 corresponds to a random policy performance and 100 corresponds to an expert policy performance.

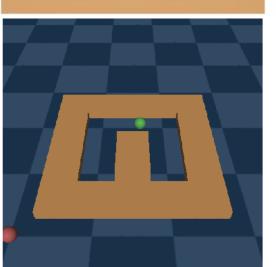
Dataset type	Environment	BC	ROMI-BCQ (ours)	MF	MB
sparse	maze2d-umaze	-3.2	139.5 ± 3.6	65.7 BEAR	-12.6 Repb-SDE
sparse	maze2d-medium	-0.5	82.4 ± 15.2	70.6 BRAC-v	21.7 MOPO
sparse	maze2d-large	-1.7	83.1 ± 22.1	81.0 BEAR	-1.5 ^{MOPO}
dense	maze2d-umaze	-6.9	98.3 ± 2.5	51.5 BRAC-p	86.2 Repb-SDE
dense	maze2d-medium	2.7	102.6 ± 32.4	39.5 BAIL	69.9 MOPO
dense	maze2d-large	-0.3	124 ± 1.3	133.0 BEAR	33.1 MOPO
fixed	antmaze-umaze	82.0	68.7 ± 2.7	90.0 BCQ	0.0
play	antmaze-medium	0.0	35.3 ± 1.3	7.5 BAIL	0.0
play	antmaze-large	0.0	20.2 ± 14.8	2.0 BAIL	0.0
diverse	antmaze-umaze	47.0	61.2 ± 3.3	52.0 BAIL	0.0
diverse	antmaze-medium	0.0	27.3 ± 3.9	61.5 ^{CQL}	0.0
diverse	antmaze-large	0.0	41.2 ± 4.2	2.0 BAIL	0.0

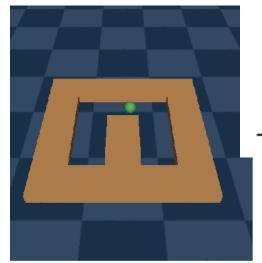
ROMI imagination



ROMI behavior

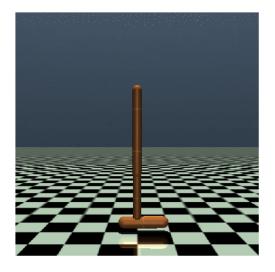
Experiments: Ablation



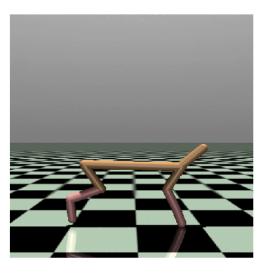


Dataset type	Environment	ROMI-BCQ (ours)	FOMI-BCQ
sparse	maze2d-umaze	139.5 ± 3.6	8.1 ± 15.5
sparse	maze2d-medium	82.4 ± 15.2	93.6 ± 41.3
sparse	maze2d-large	83.1 ± 22.1	-2.5 ± 0.0
dense	maze2d-umaze	98.3 ± 2.5	30.7 ± 0.9
dense	maze2d-medium	102.6 ± 32.4	64.7 ± 37.0
dense	maze2d-large	124.0 ± 1.3	-0.7 ± 7.1
fixed	antmaze-umaze	68.7 ± 2.7	79.5 ± 2.5
play	antmaze-medium	35.3 ± 1.3	26.2 ± 5.5
play	antmaze-large	20.2 ± 14.8	12.0 ± 3.3
diverse	antmaze-umaze	61.2 ± 3.3	66.8 ± 3.5
diverse	antmaze-medium	27.3 ± 3.9	12.3 ± 2.1
diverse	antmaze-large	41.2 ± 4.2	17.8 ± 2.1

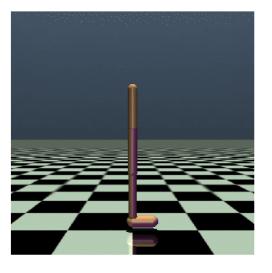
Reverse imaginations induce more conservative and effective behavior!



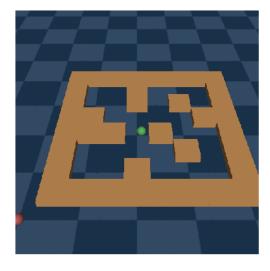
hopper-random



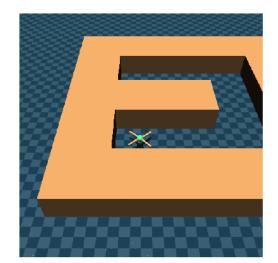
halfcheetah-medium



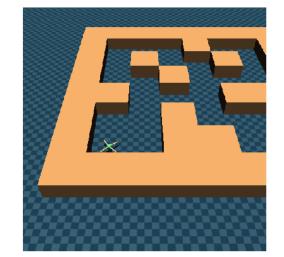
walker2d-medium-replay



maze2d-medium



antmaze-umaze-diverse



antmaze-medium-diverse

antmaze-large-diverse

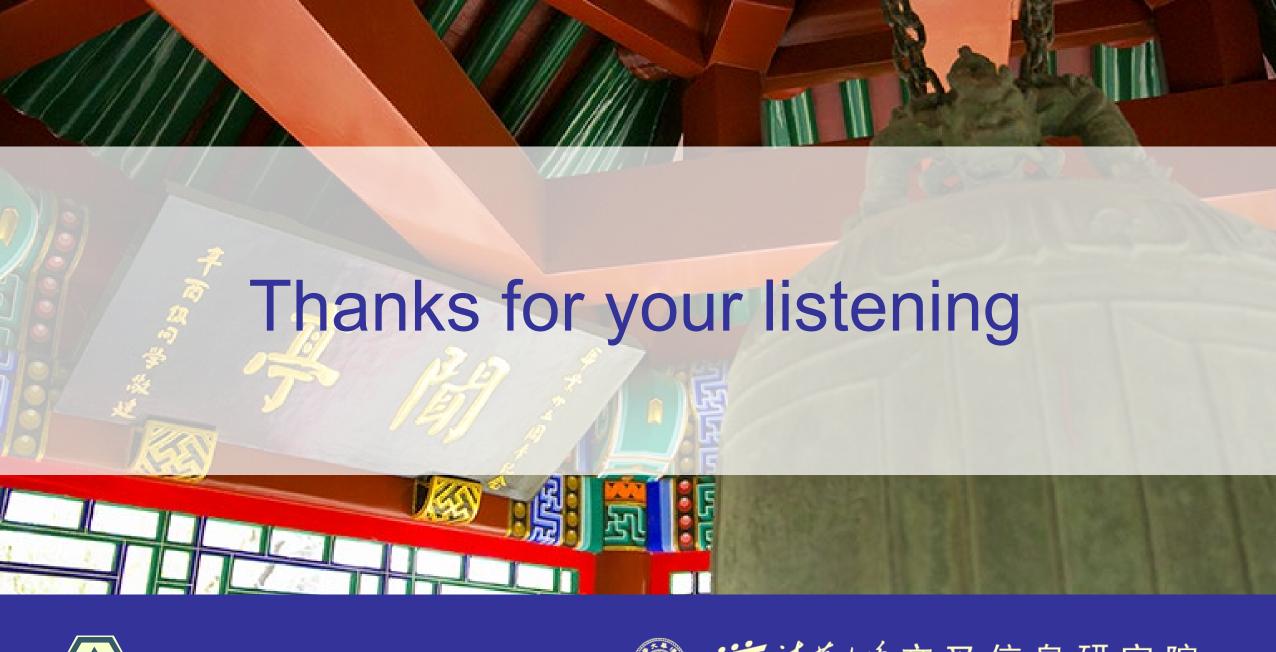


maze2d-large

Takeaway

- Reverse imaginations enable conservative generalization
- Bidirectional learning paradigm
 - Forward dataset trajectory
 - Reverse imaginary trajectory
- Better or comparable performance to state-of-the-art baselines

- More details
 - Paper & poster!



大拿交叉信息研究院 Tsinghua University Institute for Interdisciplinary Information Sciences