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Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
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Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD)
Ex∼p,x′∼p[k(x,x

′)] + Ex∼q,x′∼q[k(x,x
′)]− 2Ex∼p,x′∼q[k(x,x
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Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

Kernelized Discrete Stein Discrepancy (KDSD)
Ex,x′∼q[kp(x,x

′)]
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Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

Kernelized Support Vector Regressor (SVR) with missing features
Ex∼p[

∑
iwik(x

(i),x) + b]
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Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′

Hard to compute in general.⇒approximate with Monte Carlo
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds
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x,x′

p(x)q(x′)k(x,x′) dx dx′

Hard to compute in general.⇒approximate with Monte Carlo
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds

trade-off? p,q,k fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive
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Circuits

Probabilistic Circuits
deep generative models + deep guarantees

Kernel Circuits
express kernels as circuits

⇒ Ex∼p,x′∼q[k(x,x
′)]
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Probabilistic Circuits (PCs)
Tractable computational graphs

X1
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I. A simple tractable distribution is a PC

⇒ e.g., a multivariate Gaussian
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I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

⇒ e.g., a mixture model



Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2
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I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

III. A product of PCs is a PC
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Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2
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X1 X2
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X1 X2

w1 w2

× ×

× ×× ×
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X1

X2

X3 X4 X3 X4
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X1

X2

X3

X4

X5

Chow-Liu trees
[Chow and Liu 1968]

X1 X2

X1 X3 X4

X3 X5

Junction trees
[Bach and Jordan 2001]

Z1 Z2 Z3

X1 X2 X3

HMMs
[Rabiner and Juang 1986]

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

CNets
[Rahman et al. 2014]

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

SPNs
[Poon et al. 2011]

PSDDs
[Kisa et al. 2014]

PDGs
[Jaeger 2004]
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Which structural constraints
ensure tractability?
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decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables
A PC is smooth if all inputs of sum units depend on the same variable sets

×

X1 X2 X3

decomposable circuit

X1 X1

w1 w2

smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 8/22



decomposable + smooth PCs = …

MAR ∫
p(z,y) dZ

CON
∫
p(z,y,h) dH∫ ∫
p(z,y,h) dH dY

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 9/22



decomposable + smooth PCs = …

MAR ∫
p(z,y) dZ

CON
∫
p(z,y,h) dH∫ ∫
p(z,y,h) dH dY

? What about the expected kernel Ex∼p,x′∼q[k(x,x
′)]?

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 9/22



Can we represent kernels as circuits
to characterize tractability of its queries?
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Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(X,X′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1
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Kernel Circuits (KCs)

Common kernels can be compactly represented as
decomposable + smooth KCs:

RBF, (exponentiated) Hamming, polynomial ...
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

⇒ decompose in the same way
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

{X1}{X2}

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

{X′
1}{X′

2}

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1
k

{(X1, X′
1)}{(X2, X′

2)}
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Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

Then computing expected kernels can be done tractably by a forward pass
⇒ O(|p||q||k|)

14/22



smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] p(X) =
∑

i wipi(X), q(X′) =
∑

j w
′
jqj(X

′), and kernel k(X,X′) =
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∑
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[kl(x,x
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⇒ expectation is “pushed down” to inputs
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smooth + decomposable + compatible = tractable E[k]

[Product Nodes] p×(X) =
∏
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∏
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i)]

⇒ expectation decomposes into easier ones
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smooth + decomposable + compatible = tractable E[k]

Algorithm 1 Epn,qm [kl]— Computing the expected kernel

Input: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m,n, l are input nodes then
2: return Epn,qm [kl]
3: else if m,n, l are sum nodes then
4: return

∑
i∈in(n),j∈in(m),c∈in(l) wiw

′
jw

′′
c Epi,qj

[kc]
5: else if m,n, l are product nodes then
6: return EpnL

,qmL
[kL] · EpnR

,qmR
[kR]

Computation can be done in
one forward pass!

⇒ squared maximum mean discrepancyMMD [p,q] [Gretton et al. 2012]

⇒ + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

⇒ support vector regression (SVR) with missing features
17/22



Support vector regression with missing features

Given a regressor f : X → Y , in the case when only featuresXo = xo

are observed and featuresXm are missing, withX = (Xo,Xm), the
expected prediction is

Exm∼p(Xm|xo)[f(xo,xm)]

18/22



Support vector regression with missing features

For a kernel support vector regressor f(x) =
∑m

i=1wik(xi,x) + b, in
the case when only featuresXo = xo are observed and featuresXm are
missing, withX = (Xo,Xm), the expected prediction is

Exm∼p(Xm|xo)[f(xo,xm)] =
m∑
i=1

wiExm∼p(Xm|xo)[k(xi, (xo,xm))] + b
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Support vector regression with missing features
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⇒ Expected prediction improves over the baselines
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Applications

Support vector regression with missing features

Collapsed black-box importance sampling

⇒ What about intractable models?
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Conclusion
Takeaways

#1: you can be both tractable and expressive
#2: circuits are a foundation for tractable inference over kernels
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More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d
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starai.cs.ucla.edu/papers/ProbCirc20.pdf
youtube.com/watch?v=2RAG5-L9R70
arranger1044.github.io/probabilistic-circuits/
tinyurl.com/w65po5d
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