
Tractable Computation
of Expected Kernels

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

Uncertaity in Artificial Intelligence

Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

2/22

Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

2/22

Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD)
Ex∼p,x′∼p[k(x,x

′)] + Ex∼q,x′∼q[k(x,x
′)]− 2Ex∼p,x′∼q[k(x,x

′)]

2/22

Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

Kernelized Discrete Stein Discrepancy (KDSD)
Ex,x′∼q[kp(x,x

′)]

2/22

Expected Kernels
Motivation

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Ex∼p,x′∼q[k(x,x
′)]

⇒ In kernel-based frameworks, expected kernels are omnipresent!

Kernelized Support Vector Regressor (SVR) with missing features
Ex∼p[

∑
iwik(x

(i),x) + b]

2/22

Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′

Hard to compute in general.⇒approximate with Monte Carlo
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds

3/22

Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′

Hard to compute in general.⇒approximate with Monte Carlo
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds

p,q,k fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

3/22

Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫
x,x′

p(x)q(x′)k(x,x′) dx dx′

Hard to compute in general.⇒approximate with Monte Carlo
or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds

trade-off? p,q,k fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

3/22

Circuits

Probabilistic Circuits
deep generative models + deep guarantees

Kernel Circuits
express kernels as circuits

⇒ Ex∼p,x′∼q[k(x,x
′)]

4/22

Probabilistic Circuits (PCs)
Tractable computational graphs

X1

5/22

I. A simple tractable distribution is a PC

⇒ e.g., a multivariate Gaussian

Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

5/22

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

⇒ e.g., a mixture model

Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

5/22

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

III. A product of PCs is a PC

Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

5/22

Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

5/22

X1

X2

X3

X4

X5

Chow-Liu trees
[Chow and Liu 1968]

X1 X2

X1 X3 X4

X3 X5

Junction trees
[Bach and Jordan 2001]

Z1 Z2 Z3

X1 X2 X3

HMMs
[Rabiner and Juang 1986]

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

CNets
[Rahman et al. 2014]

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

SPNs
[Poon et al. 2011]

PSDDs
[Kisa et al. 2014]

PDGs
[Jaeger 2004]

6/22

Which structural constraints
ensure tractability?

7/22

decomposable + smooth PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables
A PC is smooth if all inputs of sum units depend on the same variable sets

×

X1 X2 X3

decomposable circuit

X1 X1

w1 w2

smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 8/22

decomposable + smooth PCs = …

MAR ∫
p(z,y) dZ

CON
∫
p(z,y,h) dH∫ ∫
p(z,y,h) dH dY

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 9/22

decomposable + smooth PCs = …

MAR ∫
p(z,y) dZ

CON
∫
p(z,y,h) dH∫ ∫
p(z,y,h) dH dY

? What about the expected kernel Ex∼p,x′∼q[k(x,x
′)]?

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 9/22

Can we represent kernels as circuits
to characterize tractability of its queries?

10/22

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(X,X′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1

11/22

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(X,X′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1

decomposable if all inputs of product units depend on disjoint sets of variables

11/22

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(X,X′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1

decomposable if all inputs of product units depend on disjoint sets of variables

smooth if all inputs of sum units depend of the same variable sets
11/22

Kernel Circuits (KCs)

Common kernels can be compactly represented as
decomposable + smooth KCs:

RBF, (exponentiated) Hamming, polynomial ...

12/22

Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

13/22

Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

⇒ decompose in the same way

13/22

Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

{X1}{X2}

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

{X′
1}{X′

2}

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1
k

{(X1, X′
1)}{(X2, X′

2)}

13/22

Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

{X1, X2}{X3}

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

{X′
1, X

′
2}{X′

3}

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1
k

{(X1, X′
1), (X2, X′

2)}{(X3, X′
3)}

13/22

Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

{X1, X2, X3}{X4}

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

{X′
1, X

′
2, X

′
3}{X′

4}

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

1 1 1
k

{(X1, X′
1), (X2, X′

2), (X3, X′
3)}{(X4, X′

4)}

13/22

Expected Kernel
tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

Then computing expected kernels can be done tractably by a forward pass
⇒ O(|p||q||k|)

14/22

smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] p(X) =
∑

i wipi(X), q(X′) =
∑

j w
′
jqj(X

′), and kernel k(X,X′) =
∑

l w
′′
l kl(X,X′):

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

k

15/22

smooth + decomposable + compatible = tractable E[k]

[Sum Nodes] p(X) =
∑

i wipi(X), q(X′) =
∑

j w
′
jqj(X

′), and kernel k(X,X′) =
∑

l w
′′
l kl(X,X′):

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

k

Ep,q[k(x,x
′)] =

∑
i,j,l wiw

′
jw

′′

l Epi,qj
[kl(x,x

′)]

⇒ expectation is “pushed down” to inputs

15/22

smooth + decomposable + compatible = tractable E[k]

[Product Nodes] p×(X) =
∏

i pi(Xi), q×(X′) =
∏

i qi(X
′
i), and kernel k×(X,X′) =

∏
i ki(Xi,X

′
i):

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

k

16/22

smooth + decomposable + compatible = tractable E[k]

[Product Nodes] p×(X) =
∏

i pi(Xi), q×(X′) =
∏

i qi(X
′
i), and kernel k×(X,X′) =

∏
i ki(Xi,X

′
i):

X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× p

X ′
1

X ′
1

X ′
2

X ′
2

×

×

×

×

×

×

X ′
3

X ′
3

×

X ′
4

q

exp(−|X1 −X ′
1|2)

exp(−|X2 −X ′
2|2)

× ×

exp(−|X3 −X ′
3|2)

×

exp(−|X4 −X ′
4|2)

k

Ep×,q× [k×(x,x
′)] =

∏
i Epi,qi

[ki(xi,x
′
i)]

⇒ expectation decomposes into easier ones

16/22

smooth + decomposable + compatible = tractable E[k]

Algorithm 1 Epn,qm [kl]— Computing the expected kernel

Input: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m,n, l are input nodes then
2: return Epn,qm [kl]
3: else if m,n, l are sum nodes then
4: return

∑
i∈in(n),j∈in(m),c∈in(l) wiw

′
jw

′′
c Epi,qj

[kc]
5: else if m,n, l are product nodes then
6: return EpnL

,qmL
[kL] · EpnR

,qmR
[kR]

Computation can be done in
one forward pass!

⇒ squared maximum mean discrepancyMMD [p,q] [Gretton et al. 2012]

⇒ + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

⇒ support vector regression (SVR) with missing features
17/22

Support vector regression with missing features

Given a regressor f : X → Y , in the case when only featuresXo = xo

are observed and featuresXm are missing, withX = (Xo,Xm), the
expected prediction is

Exm∼p(Xm|xo)[f(xo,xm)]

18/22

Support vector regression with missing features

For a kernel support vector regressor f(x) =
∑m

i=1wik(xi,x) + b, in
the case when only featuresXo = xo are observed and featuresXm are
missing, withX = (Xo,Xm), the expected prediction is

Exm∼p(Xm|xo)[f(xo,xm)] =
m∑
i=1

wiExm∼p(Xm|xo)[k(xi, (xo,xm))] + b

18/22

Support vector regression with missing features

0.2 0.4 0.6 0.8
Missing Probability

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

RM
SE

delta-ailerons
Median Imputation
MAP
Expected Prediction

0.2 0.4 0.6 0.8
Missing Probability

2.5

3.0

3.5

abalone

⇒ Expected prediction improves over the baselines
19/22

Applications

Support vector regression with missing features

Collapsed black-box importance sampling

⇒ What about intractable models?

20/22

Conclusion
Takeaways

#1: you can be both tractable and expressive
#2: circuits are a foundation for tractable inference over kernels

21/22

More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

22/22

starai.cs.ucla.edu/papers/ProbCirc20.pdf
youtube.com/watch?v=2RAG5-L9R70
arranger1044.github.io/probabilistic-circuits/
tinyurl.com/w65po5d

References I

⊕ Chow, C and C Liu (1968). “Approximating discrete probability distributions with dependence trees”. In: IEEE Transactions on Information Theory 14.3, pp. 462–467.

⊕ Rabiner, Lawrence and Biinghwang Juang (1986). “An introduction to hidden Markov models”. In: ieee assp magazine 3.1, pp. 4–16.

⊕ Bach, Francis R. and Michael I. Jordan (2001). “Thin Junction Trees”. In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.

⊕ Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ Jaeger, Manfred (2004). “Probabilistic decision graphs—combining verification and AI techniques for probabilistic inference”. In: International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 12.supp01, pp. 19–42.

⊕ Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche (July 2014). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.

⊕ Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”. In:

http://starai.cs.ucla.edu/papers/KisaKR14.pdf

	References

