Tractable Computation of Expected Kernels

*Wenzhe Li** Tsinghua University

Antonio Vergari University of California, Los Angeles *Zhe Zeng*^{*} University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

Uncertaity in Artificial Intelligence

Given two distributions ${\bf p}$ and ${\bf q}$, and a kernel ${\bf k}$, the task is to compute the *expected kernel*

 $\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$

Given two distributions ${\bf p}$ and ${\bf q}$, and a kernel ${\bf k}$, the task is to compute the *expected kernel*

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Given two distributions ${\bf p}$ and ${\bf q},$ and a kernel k, the task is to compute the <code>expected kernel</code>

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD) $\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{p}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] + \mathbb{E}_{\mathbf{x}\sim\mathbf{q},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] - 2\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$

Given two distributions ${\bf p}$ and ${\bf q}$, and a kernel ${\bf k}$, the task is to compute the *expected kernel*

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Kernelized Discrete Stein Discrepancy (KDSD) $\mathbb{E}_{\mathbf{x},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}_{\mathbf{p}}(\mathbf{x},\mathbf{x}')]$

Given two distributions ${\bf p}$ and ${\bf q}$, and a kernel ${\bf k}$, the task is to compute the *expected kernel*

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')]$$

 \Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Kernelized Support Vector Regressor (SVR) with missing features $\mathbb{E}_{\mathbf{x}\sim\mathbf{p}}[\sum_i w_i \mathbf{k}(\mathbf{x}^{(i)}, \mathbf{x}) + \boldsymbol{b}]$

Reliability vs. Flexibility

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Hard to compute in general. approximate with Monte Carlo or variational inference

PRO. Efficient computation

CON. no guarantees on error bounds

Reliability vs. Flexibility

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Hard to compute in general. approximate with Monte Carlo or variational inference

PRO. Efficient computation

CON. no guarantees on error bounds

 $\mathbf{p}, \mathbf{q}, \mathbf{k}$ fully factorized

PRO. Tractable exact computation **CON.** Model being too restrictive

Reliability vs. Flexibility

$$\mathbb{E}_{\mathbf{x}\sim\mathbf{p},\mathbf{x}'\sim\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] = \int_{\mathbf{x},\mathbf{x}'} \mathbf{p}(\mathbf{x})\mathbf{q}(\mathbf{x}')\mathbf{k}(\mathbf{x},\mathbf{x}') \, d\mathbf{x} \, d\mathbf{x}'$$

Hard to compute in general. approximate with Monte Carlo or variational inference

PRO. Efficient computation

CON. no guarantees on error bounds

trade-off?

ff? $\mathbf{p}, \mathbf{q}, \mathbf{k}$ fully factorized

PRO. Tractable exact computation **CON.** Model being too restrictive

Probabilistic Circuits

deep generative models + deep guarantees

express kernels as circuits

$$\Rightarrow \mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}' \sim \mathbf{q}}[\mathbf{k}(\mathbf{x}, \mathbf{x}')]$$

Tractable computational graphs

I. A simple tractable distribution is a PC

e.g., a multivariate Gaussian

 X_1

Tractable computational graphs

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

e.g., a mixture model

Tractable computational graphs

I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC
III. A product of PCs is a PC

Tractable computational graphs

Tractable computational graphs

Chow-Liu trees

[Chow and Liu 1968]

Junction trees

[Bach and Jordan 2001]

HMMs

[Rabiner and Juang 1986]

CNets

[Rahman et al. 2014]

SPNs [Poon et al. 2011]

PSDDs [Kisa et al. 2014]

PDGs [Jaeger 2004]

Which structural constraints ensure tractability?

A PC is *decomposable* if all inputs of product units depend on disjoint sets of variables A PC is *smooth* if all inputs of sum units depend on the same variable sets

decomposable circuit

smooth circuit

Darwiche and Marquis, "A knowledge compilation map", 2002

decomposable + smooth PCs = ...

MAR $\int p(\mathbf{z}, \mathbf{y}) \, d\mathbf{Z}$

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

decomposable + smooth PCs = ...

MAR
$$\int p(\mathbf{z}, \mathbf{y}) d\mathbf{Z}$$

CON $\frac{\int p(\mathbf{z}, \mathbf{y}, \mathbf{h}) \, d\mathbf{H}}{\int \int p(\mathbf{z}, \mathbf{y}, \mathbf{h}) \, d\mathbf{H} \, d\mathbf{Y}}$

? What about the **expected kernel** $\mathbb{E}_{\mathbf{x} \sim \mathbf{p}, \mathbf{x}' \sim \mathbf{q}}[\mathbf{k}(\mathbf{x}, \mathbf{x}')]$?

Choi et al., "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling", 2020

Can we represent kernels as circuits to characterize tractability of its queries?

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}(\mathbf{X}, \mathbf{X}') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}(\mathbf{X}, \mathbf{X}') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$

decomposable if all inputs of product units depend on disjoint sets of variables

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $\mathbf{k}(\mathbf{X}, \mathbf{X}') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$

decomposable if all inputs of product units depend on disjoint sets of variables

smooth if all inputs of sum units depend of the same variable sets

Common kernels can be compactly represented as decomposable + smooth KCs:

RBF, (exponentiated) Hamming, polynomial ...

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

tractable computation via circuit operations

i) PCs p and q and KC k are decomposable + smooth ii) PCs p and q and KC k are compatible

 \Rightarrow decompose in the same way

Expected Kernel

tractable computation via circuit operations

i) PCs ${f p}$ and ${f q}$, and KC ${f k}$ are <code>decomposable</code> + <code>smooth</code>

ii) PCs p and q and KC k are $\mbox{compatible}$

 ${X_1}{X_2}$

Expected Kernel

tractable computation via circuit operations

i) PCs ${f p}$ and ${f q}$, and KC ${f k}$ are <code>decomposable</code> + <code>smooth</code>

ii) PCs p and q and KC k are $\mbox{compatible}$

Expected Kernel

tractable computation via circuit operations

i) PCs ${f p}$ and ${f q}$, and KC ${f k}$ are <code>decomposable</code> + <code>smooth</code>

ii) PCs p and q and KC k are $\mbox{compatible}$

 ${X_1, X_2, X_3}{X_4}$

 $\{(X_1, X_1'), (X_2, X_2'), (X_3, X_3')\}\{(X_4, X_4')\}$

tractable computation via circuit operations

i) PCs p and q and KC k are $\mbox{decomposable}$ + \mbox{smooth} ii) PCs p and q and KC k are $\mbox{compatible}$

Then computing expected kernels can be done *tractably* by a forward pass $\Rightarrow \mathcal{O}(|\mathbf{p}||\mathbf{q}||\mathbf{k}|)$

[Sum Nodes] $\mathbf{p}(\mathbf{X}) = \sum_{i} w_i \mathbf{p}_i(\mathbf{X}), \mathbf{q}(\mathbf{X}') = \sum_{j} w'_j \mathbf{q}_j(\mathbf{X}'), \text{ and kernel } \mathbf{k}(\mathbf{X}, \mathbf{X}') = \sum_{l} w''_l \mathbf{k}_l(\mathbf{X}, \mathbf{X}')$:

[Sum Nodes] $\mathbf{p}(\mathbf{X}) = \sum_{i} w_i \mathbf{p}_i(\mathbf{X}), \mathbf{q}(\mathbf{X}') = \sum_{j} w'_j \mathbf{q}_j(\mathbf{X}'), \text{ and kernel } \mathbf{k}(\mathbf{X}, \mathbf{X}') = \sum_{l} w''_l \mathbf{k}_l(\mathbf{X}, \mathbf{X}')$:

q

$$\begin{split} \mathbb{E}_{\mathbf{p},\mathbf{q}}[\mathbf{k}(\mathbf{x},\mathbf{x}')] &= \sum_{i,j,l} w_i w'_j w''_l \mathbb{E}_{\mathbf{p}_i,\mathbf{q}_j}[\mathbf{k}_l(\mathbf{x},\mathbf{x}')] \\ \implies \text{ expectation is "pushed down" to inputs} \end{split}$$

[**Product Nodes**] $\mathbf{p}_{\times}(\mathbf{X}) = \prod_{i} \mathbf{p}_{i}(\mathbf{X}_{i}), \mathbf{q}_{\times}(\mathbf{X}') = \prod_{i} \mathbf{q}_{i}(\mathbf{X}'_{i}), \text{ and kernel } \mathbf{k}_{\times}(\mathbf{X}, \mathbf{X}') = \prod_{i} \mathbf{k}_{i}(\mathbf{X}_{i}, \mathbf{X}'_{i}):$

[**Product Nodes**] $\mathbf{p}_{\times}(\mathbf{X}) = \prod_{i} \mathbf{p}_{i}(\mathbf{X}_{i}), \mathbf{q}_{\times}(\mathbf{X}') = \prod_{i} \mathbf{q}_{i}(\mathbf{X}'_{i}), \text{ and kernel } \mathbf{k}_{\times}(\mathbf{X}, \mathbf{X}') = \prod_{i} \mathbf{k}_{i}(\mathbf{X}_{i}, \mathbf{X}'_{i}):$

 $\mathbb{E}_{\mathbf{p}_{ imes},\mathbf{q}_{ imes}}[\mathbf{k}_{ imes}(\mathbf{x},\mathbf{x}')] = \prod_{i} \mathbb{E}_{\mathbf{p}_{i},\mathbf{q}_{i}}[\mathbf{k}_{i}(\mathbf{x}_{i},\mathbf{x}'_{i})]$

expectation decomposes into easier ones

Algorithm 1 $\mathbb{E}_{\mathbf{p},n,\mathbf{q}_m}[\mathbf{k}_l]$ — Computing the expected kernelInput: Two compatible PCs \mathbf{p}_n and \mathbf{q}_m , and a KC \mathbf{k}_l that iskernel-compatible with the PC pair \mathbf{p}_n and \mathbf{q}_m .

```
 \begin{array}{ll} \text{1: if } m,n,l \text{ are } \textit{input} \text{ nodes then} \\ \text{2: } & \textit{return } \mathbb{E}_{\mathbf{p}n,\mathbf{q}m}[\mathbf{k}_l] \\ \text{3: } & \textit{else if } m,n,l \text{ are } \textit{sum} \text{ nodes then} \\ \text{4: } & \textit{return } \sum_{i \in in(n), j \in in(m), c \in in(l)} w_i w'_j w''_c \mathbb{E}_{\mathbf{p}_i,\mathbf{q}_j}[\mathbf{k}_c] \\ \text{5: } & \textit{else if } m,n,l \text{ are } \textit{product} \text{ nodes then} \\ \text{6: } & \textit{return } \mathbb{E}_{\mathbf{p}n_L,\mathbf{q}m_L}[\mathbf{k}_L] \cdot \mathbb{E}_{\mathbf{p}n_R,\mathbf{q}m_R}[\mathbf{k}_R] \end{array}
```

Computation can be done in one forward pass!

squared maximum mean discrepancy MMD[p, q] [Gretton et al. 2012]
 + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]
 support vector regression (SVR) with missing features

Given a regressor $f : \mathcal{X} \to \mathcal{Y}$, in the case when only features $\mathbf{X}_o = \mathbf{x}_o$ are *observed* and features \mathbf{X}_m are *missing*, with $\mathbf{X} = (\mathbf{X}_o, \mathbf{X}_m)$, the expected prediction is

$$\mathbb{E}_{\mathbf{x}_m \sim \mathbf{p}(\mathbf{X}_m | \mathbf{x}_o)}[f(\mathbf{x}_o, \mathbf{x}_m)]$$

For a kernel support vector regressor $f(\mathbf{x}) = \sum_{i=1}^{m} w_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b$, in the case when only features $\mathbf{X}_o = \mathbf{x}_o$ are *observed* and features \mathbf{X}_m are *missing*, with $\mathbf{X} = (\mathbf{X}_o, \mathbf{X}_m)$, the expected prediction is

$$\mathbb{E}_{\mathbf{x}_m \sim \mathbf{p}(\mathbf{X}_m | \mathbf{x}_o)}[f(\mathbf{x}_o, \mathbf{x}_m)] = \sum_{i=1}^m w_i \mathbb{E}_{\mathbf{x}_m \sim \mathbf{p}(\mathbf{X}_m | \mathbf{x}_o)}[\mathbf{k}(\mathbf{x}_i, (\mathbf{x}_o, \mathbf{x}_m))] + b$$

 \Rightarrow Expected prediction improves over the baselines

Collapsed black-box importance sampling

 \Rightarrow What about intractable models?

Takeaways

#1: you can be both tractable and expressive#2: circuits are a foundation for tractable inference over kernels

More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling tinyurl.com/w65po5d

References I

- Chow, C and C Liu (1968). "Approximating discrete probability distributions with dependence trees". In: IEEE Transactions on Information Theory 14.3, pp. 462–467.
- Babiner, Lawrence and Biinghwang Juang (1986). "An introduction to hidden Markov models". In: ieee assp magazine 3.1, pp. 4–16.
- Bach, Francis R. and Michael I. Jordan (2001). "Thin Junction Trees". In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.
- Darwiche, Adnan and Pierre Marquis (2002). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229–264.
- Jaeger, Manfred (2004). "Probabilistic decision graphs—combining verification and AI techniques for probabilistic inference". In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12.supp01, pp. 19–42.
- Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche (July 2014). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.
- 🕀 Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). "Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling". In: